

HyperFlow

Under The Hood | TechTalk, Mar 29th

YOU DESERVE THE BEST SECURITY

HyperFlow Now Available in R81.20

- Automatic and reactive system resource management
- Load balancing on CPU cores

O, O, Oosalik

HyperFlow Overview

Automatic system resource management (load balancing on CPU cores)

Reactive - No changes in core allocation until EF is detected.

No Manual configuration

No reboots needed

No Traffic loss

New Solution for in R81.20 | Dynamic Balancing

Dynamic Balancing – What's New in R81.20?

Dynamic Balancing – What's New in R81.20?

FW Architecture Overview

Accelerated Path

The packet is completely handled by SecureXL

Processed and forwarded to the network.

New packet flow introduced by **HyperFlow!**

Medium Path

Packet flow starts from SecureXL which passes it directly to FireWall Streaming layer for Deep-packet inspection

Accelerated Pipeline Path (New)

Slow Path

SecureXL is not able to process the packet at all

FW Architecture Overview – Cont.

High Level Packet Flow

HyperFlow in R81.20

HyperFlow Value

Major parameters:

HyperFlow Value – Boost Ratio

Boost ratio calculated per event

Boost ratio breakdown

HyperFlow Value – Reduced Processing Duration

Reduced processing duration

- 39-days timeframe
- Ports: 50051, 11133 (backup traffic)
- Represented in hours

- The accumulated diff is calculated by: $Acc_{diff} = \sum (D_{red_i})$
 - *i* = Heavy connection event index

HyperFlow Diagnostics

#	Overhead	Command	Shared Object	Symbol
# #				
	23.85%	fwk0_0	libfw_kern_64_us_0.so	[.] kiss_thin_nfa_exec_one_buf_parallel_xlate
	12.48%	fwk0_0	libfw kern 64 us 0.so	cp_md5_block_data_order
	8.34%	fwko_o	[kernel.kallsyms]	[k] e1000_xmit_frame
	4.59%	fwk0_0	[kernel.kallsyms]	[k] copy_user_generic_unrolled
	1.47%	fwk0_0	libfw_kern_64_us_0.so	fwmultik_process_entry
	1.30%	fwk0_0	libc-2.17.50	GIioctl
	1.30%	fwk0_0	libfw kern 64 us 0.so	psl handle packet
	1.20%	fwk0_0	[kernel.kallsyms]	[k] fwkdrv_ioctl
	1.15%	fwk0_0	libfw kern 64 us 0.so	hash_find_hashent
	1.10%	fwk0_0	libfw kern 64 us 0.so	fw_do_cksum
	1.07%	fwk0_0	[kernel.kallsyms]	[k] fwkdry handle packet
	1.05%	fwk0_0	libfw kern 64 us 0.so	fwuser_queue_read.lto_priv.5500
	1.02%	fwk0 0	libfw kern 64 us 0.so	fw je malloc
	0.92%	fwk0 0	libfw kern 64 us 0.so	. cmi execute ex
	0.05%	fuka a	libfu kern 64 us 0 so	en md5 black host order
		_		

Diagnostics majors:

PPE work

- HyperFlow cores (dynamic) allocation monitoring
- CPU usage advanced monitoring
- **PPE_MGR state** (changing live from Asleep to Active)
- Jobs details & count (processed by HyperFlow engine)
- Heavy connection logger and functions running on the CPU during each spike(Spike detective)

Heavy Conn Table

- Run by command: 'fw ctl multik print_heavy_conn'
- Contains diagnostic of HyperFlow's activity per connection event
- Listing per event
- Separate diagnostics for:
 - Async throughput
 - Sync throughput

```
[Expert@Gateway 172.29.31.135:0]# fw ctl multik print heavy conn --pretty
[fw 1]; Conn: 172.29.32.130:34950 \rightarrow 20.200.0.2:8001 IPP 6
 Instance load: 44%
 Connection instance load: 99%
 StartTime: 11/01/23 17:49:45
 IdentificationTime: 11/01/23 17:49:48
 Service: 6:8001
 Total Packets: 759701
 Total Bytes: 1074482848
 Num of PM jobs: 570118
     of MD5 jobs: 570118
 Num of buffers sent to Main: 0
 DDF Heavy Duration: 7
 Async Duration: 7
 Async Bytes: 951014898
 Async Transitions: 0
 Async Avg Load: 68%
 Sync Avg Load: 44%
 Medium Well eligible: Yes (PSL)
```

HYPERFLOW

FOLLOWING PLAN

HyperFlow- Following Plan

CIFS Support

Additional protocols & jobs

Debugging and diagnostics

HyperFlow Following Plan

- Addressing customer feedbacks
- Expanding HyperFlow customers

HyperFlow Following Plan

Additional protocols & jobs, **UDP** traffic support

- Keeping customers pain-points in mind
- Improving Infrastructure to expand supported heavy connection events

HyperFlow Following Plan

HyperFlow activity summary

New heavy connections table

Debugging & diagnostics

Performance statistics

HyperFlow triggers log

THANK YOU

Contact us:

eladni@checkpoint.com

chenmu@checkpoint.com

roic@checkpoint.com

yonatanz@checkpoint.com

YOU DESERVE THE BEST SECURITY