

CGNS VWAN HUB INTEGRATION

Azure vWAN Overview

- Azure Virtual WAN(vWAN) is a networking service, that provides secure cloud transit and access to resources such as:
 - Customer on-premise branches
 - SD-WAN
 - Site-to-site VPN connectivity
 - Remote user VPN (Point-to-site) connectivity
 - ExpressRoute connectivity
 - Virtual networks (VNET)
 - Internet
- Hub and Spoke architecture The Hub managed and hosted by Azure.

ROUTING / SECURITY

Virtual WAN

Unified hub and spoke architecture with NaaS services for Connectivity, Security and Routing using Microsoft Global Backbone

Virtual WAN is a managed wide area networking (WAN) service that makes it easy for you to build, manage, and monitor a global network that connects resources running across your cloud and on-premises

environments

Branch VPN: Site to Site

- Scale and capacity
- SD-WAN Link connection
- CPE connectivity automation to vWAN VPN gateways
- NAT (Overlapping site IP)

Remote User VPN: Point to Site

- Scales up to 100K users
- Global Traffic Manager
- · Azure Windows client
- Azure MacOS client

Private Connectivity: Express Route

- Scale and 20 Gbps agg
- ER Encryption (VPN over ER)

Virtual Hub Router

- VNET Transit
- Up to 50 Gbps throughput
- S2S VPN <-> ER Transit
- S2S <-> P2S VPN Transit

Advanced Routing

- Automatic meshed hubs
- Route Table (assoc., prop.)
- Routing Intent, Routing Policy
- BGP Peer

Managed NVA

- Integrated SD-WAN/ Connectivity Network Virtual Appliance (NVA)
- Managed Firewall Security NVA

Use Cases

Single Virtual Hub

East-West Branch to Branch* East-West VNet to VNet

North-South Branch to VNET North-South VNET to Branch

North-South Branch to Internet North-South VNet to Internet

Inter-hub and Hybrid Scenarios

East-West Branch to Branch East-West VNet to VNet

North-South Branch to VNET North-South VNET to Branch

Azure ExpressRoute to VNET Azure ExpressRoute to SD-WAN

Single Hub

Two Hubs

Lab Diagram

Ingress Packet Flow

East-West Packet Flow Internet Hub-1 **US West Central** 5 tuple **CGNS CGNS** Internal L/B Peering Peering vNET-2 ···> vNET-3 vNET-2_Client vNET-3_Client

East-West – Subnet to Subnet

East-West – Host to Host Internet WestCentral-Hub1 **CGNS CGNS** 5 tuple Internal LB Peering VNET-10.30.0.0/16 10.30.0.0/24 10.30.1.0/24 UDR: 10.30.0.0/24 UDR: 10.30.1.0/24 10.30.0.4/32 nexthop ILB 10.30.1.4/32 nexthop ILB 10.30.0.5/32 nexthop ILB 10.30.0.4 10.30.0.5 10.30.1.4 10.30.1.5 10.30.1.5/32 nexthop ILB 10.30.1.0/24 nexthop ILB 10.30.0.0/24 nexthop ILB

Client to Site VPN Design

Traffic Manager Load Distribution Methods

Geographic

Latency Based

Traffic Manager Monitoring - Profiles

THANK YOU

YOU DESERVE THE BEST SECURITY